光传感系统中的重要 有源光器件和无源光器件 (一) 有源器件 1.1。激光与激光器 1.2。半导体光源

(a) Absorption (b) Spontaneous emission (c) Stimulated emission

红宝石激光器

Figure 7-6 Typical setup of a pulsed ruby laser using flashlamp pumping and external mirrors.

Figure 7-2 Energy levels pertinent to the operation of a ruby laser. (After Reference [2].)

"Stimulated optical radiation in ruby lasers", *Nature*, **187**, 493, 1960).

May 17, 1960: Ted Maiman's ruby laser

Theodore Harold Maiman

Figure 7-10 Typical continuous solid-state laser arrangement employing an elliptic cylinder housing for concentrating lamp light onto laser.

Nd³⁺: YAG 能级图

Figure 7-11 Energy-level diagram for the ground state and the states involved in laser emission at 1.059 μ m for Nd³⁺ in a rubidium potassium barium silicate glass. (After Reference [8].)

a continuous wave (cw) helium-neon laser operation (1960-1962)

Ali Javan and his associates William Bennett Jr. and Donald Herriott at Bell Labs were first to successfully demonstrate a continuous wave (cw) heliumneon laser operation (1960-1962). (Courtesy of Bell Labs, Lucent Technologies.)

氦氛激光器的工作原理

激光的波长

激光的模式特性(纵模)

激光的阈值特性

激光的模式特性 (横模)

1.2 半导体光源

LED(半导体发光二极管)

LD(半导体激光二极管)

与

半导体晶体的能带结构

晶体的作用

PE of the electron around an isolated atom

When *N* atoms are arranged to form the crystal then there is an overlap of individual electron *PE* functions.

PE of the electron, V(x), inside the crystal is periodic with a period *a*.

GaAs 能带结构

半导体的光激发

能带结构与载流子分布

本征半导体和掺杂半导体

n型半导体的导电

Properties of the *pn* junction.

pn 结的偏压

加电压(正反向)的pn 结

pn 结中的电流

pn 结中的载流子

pn 结的能带结构

LED 原理结构图

双异质结 LED

半导体激光器

PN 结中的受激辐射

典型的半导体 LD 结构图

砷化镓激光器结构

半导体激光器输出特性

分布 BRAGG 反射半导体激光器

(a) D is tribute d B ragg reflection (D B R) laser principle. (b) Partially reflected w aves at the corrugations can only constitute a reflected w ave when the wavelength satisfies the B ragg condition. Reflected waves A and B interfere constructive when $q(\lambda_B/2, n) = \Lambda$.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

(a) D is tributed feedback (DFB) lasers tructure. (b) Ideal lasing emission output. (c) Typical output spectrum from a DFB laser.

© 1999 S.O.K. as a p, O p to electronics (Prentice Hall)

